78 research outputs found

    A review of above ground necromass in tropical forests

    Get PDF

    The tension between fire risk and carbon storage: evaluating U.S. carbon and fire management strategies through ecosystem models

    Get PDF
    Fire risk and carbon storage are related environmental issues because fire reduction results in carbon storage through the buildup of woody vegetation, and stored carbon is a fuel for fires. The sustainability of the U.S. carbon sink and the extent of fire activity in the next 100 yr depend in part on the type and effectiveness of fire reduction employed. Previous studies have bracketed the range of dynamics from continued fire reduction to the complete failure of fire reduction activities. To improve these estimates, it is necessary to explicitly account for fire reduction in terrestrial models. A new fire reduction submodel that estimates the spatiotemporal pattern of reduction across the United States was developed using gridded data on biomass, climate, land-use, population, and economic factors. To the authors’ knowledge, it is the first large-scale, gridded fire model that explicitly accounts for fire reduction. The model was calibrated to 1° × 1° burned area statistics [Global Burnt Area 2000 Project (GBA-2000)] and compared favorably to three important diagnostics. The model was then implemented in a spatially explicit ecosystem model and used to analyze 1620 scenarios of future fire risk and fire reduction strategies. Under scenarios of climate change and urbanization, burned area and carbon emissions both increased in scenarios where fire reduction efforts were not adjusted to match new patterns of fire risk. Fuel reducing management strategies reduced burned area and fire risk, but also limited carbon storage. These results suggest that to promote carbon storage and minimize fire risk in the future, fire reduction efforts will need to be increased and spatially adjusted and will need to employ a mixture of fuel-reducing and non-fuel-reducing strategies

    Linking remote-sensing estimates of land cover and census statistics on land use to produce maps of land use of the conterminous United States

    Get PDF
    Human use of the land has a large effect on the structure of terrestrial ecosystems and the dynamics of biogeochemical cycles. For this reason, terrestrial ecosystem and biogeochemistry models require moderate resolution (e.g., ≤0.5°) information on land use in order to make realistic predictions. Few such data sets currently exist. To create a land use data set of sufficient resolution, we developed models relating land cover data derived from optical remote sensing and a census database on land use for the conterminous United States. The land cover product used was from the International Geosphere-Biosphere Programme DISCover global product, derived from 1 km advanced very high resolution radiometer imagery, with 16 land cover classes. Land use data at state-level resolution came from the U.S. Department of Agriculture\u27s Major Land Uses database, aggregated into four general land use categories: Cropland, Pasture/Range, Forest, and Other. We developed and applied models relating these data sets to generate maps of land use in 1992 for the conterminous United States at 0.5° spatial resolution

    Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure

    Get PDF
    Abrupt forest disturbances generating gaps \u3e0.001 km2 impact roughly 0.4–0.7 million km2a−1. Fire, windstorms, logging, and shifting cultivation are dominant disturbances; minor contributors are land conversion, flooding, landslides, and avalanches. All can have substantial impacts on canopy biomass and structure. Quantifying disturbance location, extent, severity, and the fate of disturbed biomass will improve carbon budget estimates and lead to better initialization, parameterization, and/or testing of forest carbon cycle models. Spaceborne remote sensing maps large-scale forest disturbance occurrence, location, and extent, particularly with moderate- and fine-scale resolution passive optical/near-infrared (NIR) instruments. High-resolution remote sensing (e.g., ∼1 m passive optical/NIR, or small footprint lidar) can map crown geometry and gaps, but has rarely been systematically applied to study small-scale disturbance and natural mortality gap dynamics over large regions. Reducing uncertainty in disturbance and recovery impacts on global forest carbon balance requires quantification of (1) predisturbance forest biomass; (2) disturbance impact on standing biomass and its fate; and (3) rate of biomass accumulation during recovery. Active remote sensing data (e.g., lidar, radar) are more directly indicative of canopy biomass and many structural properties than passive instrument data; a new generation of instruments designed to generate global coverage/sampling of canopy biomass and structure can improve our ability to quantify the carbon balance of Earth\u27s forests. Generating a high-quality quantitative assessment of disturbance impacts on canopy biomass and structure with spaceborne remote sensing requires comprehensive, well designed, and well coordinated field programs collecting high-quality ground-based data and linkages to dynamical models that can use this information

    Building a Model of Collaboration Between Historically Black and Historically White Universities

    Get PDF
    Despite increases over the last two decades in the number of degrees awarded to students from underrepresented groups in science, technology, engineering, and mathematics (STEM) disciplines, enhancing diversity in these disciplines remains a challenge. This article describes a strategic approach to this challenge—the development of a collaborative partnership between two universities: the historically Black Elizabeth City State University and the historically White University of New Hampshire. The partnership, a type of learning organization built on three mutually agreed upon principles, strives to enhance opportunities for underrepresented students to pursue careers in the STEM disciplines. This article further describes six promising practices that framed the partnership, which resulted in the submission of nine proposals to federal agencies and the funding of four grants that led to the implementation, research, learning, and evaluation that followed

    Global Transition Rules for Translating Land-use Change (LUH2) To Land-cover Change for CMIP6 using GLM2

    Get PDF
    Information on historical land-cover change is important for understanding human impacts on the environment. Over the last decade, global models have characterized historical land-use changes, but few have been able to relate these changes with corresponding changes in land-cover. Utilizing the latest global land-use change data, we make several assumptions about the relationship between land-use and land-cover change, and evaluate each scenario with remote sensing data to identify optimal fit. The resulting transition rule can guide the incorporation of land-cover information within earth system models

    Vegetation demographics in Earth System Models: A review of progress and priorities

    Get PDF
    Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that permit the representation of plant demographics in ESMs, and identify issues raised by these developments that highlight important gaps in ecological understanding. These issues inevitably translate into uncertainty in model projections but also allow models to be applied to new processes and questions concerning the dynamics of real-world ecosystems. We argue that stronger and more innovative connections to data, across the range of scales considered, are required to address these gaps in understanding. The development of first-generation land surface models as a unifying framework for ecophysiological understanding stimulated much research into plant physiological traits and gas exchange. Constraining predictions at ecologically relevant spatial and temporal scales will require a similar investment of effort and intensified inter-disciplinary communication
    • …
    corecore